Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

Fluvial islands: First stage of development from nonmigrating (forced) bars and woody-vegetation interactions

Wintenberger, C. L. ; Rodrigues, S. ; Breheret, J.-G. ; Villar, M.
Geomorphology, 2015, 246 : 305 - 320.
Article
Fluvial islands can develop from the channel bed by interactions between pioneer trees and bars. Although vegetation recruitment and survival is possible on all bar types, it is easier for trees to survive on nonmigrating bars developed from a change in channel geometry or to the presence of a steady perturbation. This field study details the first stages of development of a vegetated mid-channel, nonmigrating (or forced) bar and its evolution toward an island form. Over six years, analysis of bed topographical changes, vegetation density and roughness, scour and fill depths, sediment grain size and architecture, and excess bed shear stress highlighted a specific signature of trees on topography and grain size segregation. Two depositional processes combining the formation of obstacle marks and upstream-shifting deposition of sediments led to the vertical accretion of the vegetated bar. During the first stage of the bar accretion, bedload sediment supply coming from surrounding channels during floods was identified as a key process modulated by the presence of woody vegetation and a deflection effect induced by the preexisting topography. Grain size segregation between vegetated and bare areas was also highlighted and interpreted as an important process affecting the development of surrounding channels and the degree of disconnection (and hence the speed of development) of a growing island. The heterogeneity of bedload supply can explain why sediment deposition and density of trees are not strictly related. A general conceptual model detailing the first stages of evolution from a bar to an established island is proposed for relatively large lowland rivers. (C) 2015 Elsevier B.V. All rights reserved.